

 Migrating SQL Data to Databricks
A Foundation for Digital Transformation

Abstract
 This whitepaper details a rapid method for migrating your SQL data to the Databricks SQL platform,

illustrating the process through a clinical dataset while framing the benefits offuture-proofing the data
architecture

Kurt Rosenfeld

 krosenfeld@ctidata.com

White Paper

http://www.ctidata.com

www.ctidata.com 2 Rev. 11-Jun-25

Migrating SQL Data to Databricks
A Foundation for Digital Transformation

Table of Contents

1.0 Introduction ... 3

2.0 Database Migration Concerns ... 5

3.0 Data Product Trace Maps .. 7

4.0 Migrating Logic .. 9

5.0 Migrating Data .. 12

6.0 Dissecting a Data Example ... 18

6.1 Environment Setup.. 18

6.2 Secrets and Run-Time Variables Setup ... 20

7.0 Conclusion .. 29

About CTI Data... 31

http://www.ctidata.com

www.ctidata.com 3 Rev. 11-Jun-25

Migrating SQL Data to Databricks
A Foundation for Digital Transformation

1.0 Introduction

Shifting SQL workloads to a unified Data Infrastructure platform is increasingly important.
Here's why: Historically, IT automation depended solely on structured data. Today, generative AI
(GenAI) can surface information in the hordes of unstructured data, powering new automations.
Consequently, our systems must marry the unstructured "analog" data of the physical world with
its structured "digital" twin. This requires a new perspective on IT data infrastructure. Existing

infrastructure evolved fragmented: structured data residing
in a row or columnar databases, object data residing as
"blobs" in “containers” or “buckets,” and file data residing
in file systems — each with distinct metadata and access
controls.
Such fragmentation is now a bottleneck; we need an
infrastructure that treats structured and unstructured data
as an integrated whole, along with a single metadata and
relationship catalog, unified governance and control,

within a uniform access platform.
The technology vendors have shoehorned their solutions towards this goal, adapting their
SQL/NoSQL databases for object storage or extending their data lakes for SQL, with further
adaptations for a new data class, the high-dimension vectors crucial to GenAI.
It’s a point-in-time mess, leaving the
data engineer and end-user to work
around the constraints of these
platform legacies.
But it’s improving, and the vendors
most relevant are the cloud data
titans: Google, Microsoft, Amazon,
Snowflake, and Databricks, with
Salesforce and Oracle vying for their
place.
The desired solution is as
straightforward as depicted on the
right.
The table on the next page calls out
how well-positioned Databricks is for
meeting this goal with the arrival of their serverless SQL capability in June 2022, deeply
integrated with their open, multi-modal data platform heritage and processing tools.

http://www.ctidata.com
https://app.napkin.ai/page/CgoiCHByb2Qtb25lEiwKBFBhZ2UaJGE1ZDJmZmM1LWJmNDItNDlkNi05MjI4LTFmZTk5OGM2ZDIzMw?s=1
https://app.napkin.ai/page/CgoiCHByb2Qtb25lEiwKBFBhZ2UaJGE1ZDJmZmM1LWJmNDItNDlkNi05MjI4LTFmZTk5OGM2ZDIzMw?s=1

www.ctidata.com 4 Rev. 11-Jun-25

Databricks’ Position

Any compute model ➜ Serverless (SaaS) or managed (PaaS)

Any processing model ➜ Python, R, Scala, Java, SQL

Rapid delivery ➜ Built-in DevOps, DataOps, MLOps

Process all types of
data

➜ Data Lake with choices of structured abstractions

One data framework ➜ From ingestion to micro-streaming

Single ecosystem,
massive scale

➜ Reduce technology silos, one platform for all needs

Cloud vendor
abstraction

➜ Mix and match any Cloud

Seamless data
federation

➜ External data is an equal citizen

Safe data sharing ➜ Internal and external teams have governed access

Uniform governance
& control ➜ All data, all code, all security, all deployments

No vendor lock-in ➜ 100% open technology

Consequently, running your SQL workloads on Databricks means you are futureproofing the
data’s value, regardless of how the data may need to evolve and integrate. Furthermore, even for
one-off throw-away SQL workloads, Databricks is positioned as a perfectly competent platform.
To explore what is involved in migrating to Databricks, we need a legacy platform to make the
details meaningful, so in this case, we assume Snowflake is the legacy.
These two platforms, with very different origins, now frequently compete as their technologies
expanded and began to overlap. The chart below helps frame the current state but keep in mind
we are singularly focused on the SQL aspects in this document.

http://www.ctidata.com

www.ctidata.com 5 Rev. 11-Jun-25

Snowflake zero administration SQL
service addressing analytic use cases

Databricks open-source computing and
data service addressing data science use
cases

Serverless SQL platform Ecosystem tying together compute
provisioning, structured and unstructured
data management, and ML management
Capable of serverless SQL operation
(transparent dynamic provisioning of
resources)

Supports non-SQL logic as a separate
capability callable from SQL

Supports SQL processing as an equal
citizen to its other computing capabilities

Data pipelining and orchestration require
separate tooling

Integrates batch and real-time data
pipelining and orchestration

Federates structured and semi-structured
data

Federates any data

Governance and catalog addresses data
only

Governed by a unified data and process
manager with AI-assisted glossary
generation

 Plugins for popular BI platforms AI-assisted exploratory data analysis
(EDA) tooling with plugins for popular BI
platforms

2.0 Database Migration Concerns

While SQL database platforms are conceptually similar – reflecting the power of SQL as a
standard – all the platforms have feature sets with real differences, which, from a migration
point-of-view, raise these migration concerns:

http://www.ctidata.com

www.ctidata.com 6 Rev. 11-Jun-25

 Concern

Data Adapting data types and converting formats

Logic Adapting logic residing in the external programs (e.g. SQL statements) or in the data
platform (e.g. Stored Procedures) to ensure functional equivalence

Process Reproducing the program logic that controls data processing cycles

Security Reproducing controls that prevent improper data access and creation

Operations Reproducing infrastructure-as-code and other platform automation such as identity
management, metering, and chargebacks

Meta-data Transferring data descriptions and business rule descriptions

Applying these concerns specific to migrating Snowflake to Databricks, we note these strategies:

Technical Element Migration Considerations Migration Strategies

Data and Tables

Data types
Similar, special handling for variants
and geospatial

Review DDL, adapt dependent
SQL

Views, materialized
views

Same features and methods
Apply SQL dialect conversion
automation

General Logic

SQL dialect Similar, ANSI SQL centric with
minor differences

Apply SQL dialect conversion
automation

Ingestion staging Same features, similar methods
Repoint ingestion tool, or replace
with Databricks Autoloader

Specialized Logic

User Defined
Functions

Same features with syntax &
language differences

Convert syntaxes, maintain
function signature

Stored Procedures
and Triggers

Needs alternative solution
Replace with UDFs or Delta Live
Tables

http://www.ctidata.com

www.ctidata.com 7 Rev. 11-Jun-25

SQL refactoring
Identify high-cost queries (using
query profiler)

Enhance with Databricks
hashing/join features

Process Control

CLI scripts
CLI's different, with little
equivalence

Assess CLI script logic and
recreate using Python, Databricks
Jobs, etc.

Orchestration Simple to convert Snowflake Tasks
Use richer features of Databricks
Workflow (or repoint external tool)

Security

Data privacy
Data masking, PII detection, clean
rooms, audit differences

Map privacy setup, leverage Unity
Catalog for data provenance

Identities, access
control

Similar privilege/permission mgt,
different row level security

Map and improve with Unity
Catalog

Operational Control

Data clustering
Clustering concepts similar,
different syntaxes, less automated

Apply additional clustering based
on query cost profiles

Resources,
chargebacks

Different models, Databricks is
more granular

Rethink to leverage Databricks tag-
based granular capture

Elastic controls
Different methods/latency for
automated scaling up/down

Assess scaling latency and use
Databricks' more granular control

The top-of-mind topics are the first two, data and logic; we will dissect the first, the data topic,
and touch on the logic topic, leaving a fuller examination for a later paper.

3.0 Data Product Trace Maps

This diagram depicts the typical elements of an analytic data environment: various upstream
services execute embedded SQL logic, stored procedures, or user-defined functions to produce or
change data, with various downstream services consuming and sometimes producing or changing
data.

http://www.ctidata.com

www.ctidata.com 8 Rev. 11-Jun-25

Orchestration

• Airflow

• Control-M

Other Data Products

Batching

• Informatica

Changing

Historical

Streaming

• Kafka

• Debezium

Procs

Ingestion

• Fivetran

• Airbyte

SQL

SQL

SQL

SQL

SQL

SQL

Historical

Upstream

Data Sources

Downstream

Data Sinks

Target Data Product

(eg. Customer360)

Procs

Transform

• DBT

• Coalesce

SQL

</>

We need a trace map of the dependency pathways for all the logic and related data in scope for
the migration. A good practice is to scope the work by data product.
One of the beauties, from the point of view of mapping these dependency paths, is that SQL
logic is almost always stateless: all state is stored in the data tables, the exception is when a
stored procedure, trigger or custom function affects a variable.
This means modern data lineage tools can generate the trace map, like the diagram below, by
probing the program objects of each deployed technology, extracting the logic, and identifying
the discrete data
elements that are
touched, inferring
the logic-to-data
pathways.
But even so, a data
engineer should
inspect the results
and fill in the gaps
as necessary.

http://www.ctidata.com

www.ctidata.com 9 Rev. 11-Jun-25

4.0 Migrating Logic

Logic migration is a distinctly different endeavor from data migration. The upstream and
downstream technologies need two modifications to switch to the future platform: their data
endpoint connections must be changed, which is simple enough, and their logic must be adapted
to the differences in data types, data formats, logic dialects, and invocation methods.
Most SQL logic needs only minor changes. There is one exception: Stored Procedures and
Triggers. Databricks SQL does not yet provide these features; if your data heavily depends on
them, some “rethink” work will be necessary to recreate their functionality.
To get a feel for the SQL changes, consider the query below, which retrieves the top 5
pneumonia-related admissions for the past year with a mortality count. A typical question with a
typical SQL expression.

SELECT
 concat(DR.DESCRIPTION,
 ' (', DR.DRG_CODE, ')')
 AS "DRG Description",
 count(DISTINCT A.HADM_ID)
 AS "Pneumonia Diagnosis",
 count(
 DISTINCT CASE
 WHEN A.HOSPITAL_EXPIRE_FLAG = TRUE
 THEN A.HADM_ID
 ELSE NULL
 END
) AS "Mortality Count"
FROM ADMISSIONS AS A
JOIN DIAGNOSES_ICD AS D
 ON A.HADM_ID = D.HADM_ID
JOIN D_ICD_DIAGNOSES AS DI
 ON D.ICD_VER_CODE = DI.ICD_VER_CODE
JOIN DRGCODES AS DR
 ON A.HADM_ID = DR.HADM_ID
WHERE
 date_part(YEAR, A.ADMITTIME) = 2024
 AND DI.LONG_TITLE ILIKE '%pneumonia%'
GROUP BY
 DR.DESCRIPTION,
 DR.DRG_CODE
ORDER BY
 "Pneumonia Diagnosis" DESC NULLS LAST
LIMIT 5

SELECT
 concat(DR.DESCRIPTION,
 ' (', DR.DRG_CODE, ')')
 AS `DRG Description,`
 count(DISTINCT A.HADM_ID)
 AS `Pneumonia Diagnosis`,
 count(
 DISTINCT CASE
 WHEN A.HOSPITAL_EXPIRE_FLAG = TRUE
 THEN A.HADM_ID
 ELSE NULL
 END
) AS `Mortality Count`
FROM ADMISSIONS AS A
JOIN DIAGNOSES_ICD AS D
 ON A.HADM_ID = D.HADM_ID
JOIN D_ICD_DIAGNOSES AS DI
 ON D.ICD_VER_CODE = DI.ICD_VER_CODE
JOIN DRGCODES AS DR
 ON A.HADM_ID = DR.HADM_ID
WHERE
 EXTRACT(YEAR FROM A.ADMITTIME) = 2024
 AND DI.LONG_TITLE ILIKE '%pneumonia%'
GROUP BY
 DR.DESCRIPTION,
 DR.DRG_CODE
ORDER BY
 `Pneumonia Diagnosis` DESC NULLS LAST
LIMIT 5

What changed? The Snowflake date_part() function is replaced with the ANSI SQL extract()
function, and double quotes for enclosing identifiers are replaced with back-ticks (e.g. `Mortality
Count`).

http://www.ctidata.com

www.ctidata.com 10 Rev. 11-Jun-25

We used translation technology to make these changes, eliminating the labor of syntactic
correction. However, the advancement of Large Language Models is fast displacing this method.
Nowadays, you can direct your LLM to review the reference documentation (see list below)
along with your source code to provide conversion analysis and “first-pass” converted code.
Although not yet perfect, the pace of improvement is remarkable. Databricks SQL has fast-
evolving enhancements, making the LLM output generated from the reference documentation
invaluable compared to almost immediately dated guides and other alternatives.
Snowflake and Databricks SQL Reference Documentation:
https://docs.snowflake.com/en/sql-reference/sql-all

https://docs.snowflake.com/en/sql-reference/functions-all

https://docs.databricks.com/en/sql/language-manual/sql-ref-datatypes.html

https://docs.databricks.com/en/sql/language-manual/sql-ref-functions-builtin-alpha.html

Snowflake Function Databricks SQL Equivalent Notes

GET_DDL(object_name) SHOW CREATE TABLE table_name (for

tables), query

information_schema.TABLES or

information_schema.COLUMNS for others

Databricks uses SHOW CREATE for

tables. Use information_schema

for programmatic metadata access.

SYSTEM$GET_PREDECESSOR_R
ETURNED_COLUMNS(table_na
me)

Not Directly Available. Consider Delta Lake

Change Data Feed.

Snowflake-specific for CDC.

Databricks uses Delta Lake CDC.

SYSTEM$CLUSTERING_INFORM
ATION(table_name)

Analyze information_schema.COLUMNS

statistics; for Delta Lake, DESCRIBE DETAIL
table_name.

Infer clustering from stats. Delta Lake

shows partitioning/Z-Ordering.

SYSTEM$TASK_HISTORY(...) Query system.task_history (if using

Databricks Workflows).

Specific to Snowflake Tasks.

Databricks Workflows has its own

history table.

SYSTEM$PIPE_STATUS('pipe
_name')

Monitor Auto Loader stream status via Spark

Structured Streaming APIs or Delta Live Tables

UI/APIs.

Specific to Snowflake Pipes.

Databricks uses Auto Loader/DLT,

monitored differently.

CURRENT_REGION() Not Directly Available as a SQL function. Part of

workspace config.

Databricks region is a configuration

setting.

GET_OBJECT_S3('s3://...'
)

spark.read.format('...').load('s3:/
/...') (replace ‘…’ with format).

Databricks uses Spark’s data source
API.

STAGE_FILES(...) (external

stages)

Use dbutils.fs.ls('s3://...') or cloud

provider SDKs.

Databricks interacts with cloud

storage directly.

CONVERT_TIMEZONE(target_
timezone,

from_utc_timestamp(to_utc_timestamp
(timestamp, source_timezone),
target_timezone)

Convert to UTC first if source has

timezone.

http://www.ctidata.com
https://docs.snowflake.com/en/sql-reference/sql-all
https://docs.snowflake.com/en/sql-reference/functions-all
https://docs.databricks.com/en/sql/language-manual/sql-ref-datatypes.html
https://docs.databricks.com/en/sql/language-manual/sql-ref-functions-builtin-alpha.html

www.ctidata.com 11 Rev. 11-Jun-25

Snowflake Function Databricks SQL Equivalent Notes

source_timezone,
timestamp)

DATE_PART(date_or_time_p
art, expression)

extract(date_or_time_part FROM
expression) or year(expression),

month(expression), etc.

Databricks offers both general and

specific date/time functions.

DATE_TRUNC(date_or_time_
part, timestamp)

date_trunc(date_or_time_part,
timestamp)

Function name is the same.

MASK(input_string, ...) Requires custom UDF or use Unity Catalog’s
data masking.

Snowflake’s MASK is built-in;

Databricks needs UDF or Unity

Catalog.

STRTOK_TO_ARRAY(string,
delimiter)

split(string, delimiter) Different function name.

SPLIT_TO_TABLE(input,
delimiter)

explode(split(input, delimiter)) Use explode after splitting.

RLIKE(subject, pattern) subject rlike pattern Uses the rlike operator.

LIKEANY(string,
pattern1, pattern2, ...)

string LIKE pattern1 OR string LIKE
pattern2 OR ...

Requires explicit OR conditions.

SOUNDEX(string) Requires custom UDF or external Spark library. Snowflake built-in; Databricks needs

UDF/external library.

LEVENSHTEIN(string1,
string2)

Requires custom UDF or external Spark library. Similar to SOUNDEX.

LISTAGG(expression [,
delimiter]) [WITHIN
GROUP (ORDER BY ...)]
[ON OVERFLOW TRUNCATE
'string' [WITHOUT COUNT
| WITH COUNT]]

array_join(collect_list(expression)
WITHIN GROUP (ORDER BY
ordering_expression), delimiter)
OVER (PARTITION BY
grouping_expression)

WITHIN GROUP moved inside

collect_list. Manual overflow

handling.

BITAND(expr1, expr2) expr1 & expr2

BITOR(expr1, expr2) expr1 | expr2

BITXOR(expr1, expr2) expr1 ^ expr2

BITNOT(expr1) ~ expr1

IFF(condition,
true_value, false_value)

CASE WHEN condition THEN true_value
ELSE false_value END

Standard SQL CASE WHEN.

NVL(expr1, expr2) coalesce(expr1, expr2) Standard SQL coalesce.

ZEROIFNULL(numeric_expr) CASE WHEN numeric_expr IS NULL THEN
0 ELSE numeric_expr END

Achieved using CASE WHEN.

http://www.ctidata.com

www.ctidata.com 12 Rev. 11-Jun-25

Snowflake Function Databricks SQL Equivalent Notes

TRY_CAST(source_value AS
data_type)

TRY_CAST(source_value AS data_type)

(newer), or CASE WHEN TRY_CAST(...) IS
NOT NULL THEN TRY_CAST(...) END

TRY_CAST available in recent

runtimes.

PARSE_JSON(string) from_json(string,
schema_of_json(string))

Requires schema; schema_of_json

can infer.

GET_PATH(variant, path) get_json_object(variant, path) or

variant.path.to.element

Both function and dot notation

available.

FLATTEN(input =>
array_or_object)

explode(input) Uses the explode function.

XMLGET(xml, tag) Requires Spark XML libraries (e.g., xml_xpath

after parsing).

Databricks uses Spark for XML

processing.

POLICY_CONTEXT(...) Not Directly Available. Use Unity Catalog

features.

Databricks uses Unity Catalog for

security policies.

ARRAY_CONSTRUCT(...) array(...) Databricks array() function.

5.0 Migrating Data

Historical data is unique in that it reflects business rules from the past, manifest in the data logic
and the data inputs at the time, which may no longer be available. It is almost always preferable
to migrate historical data rather than regenerate it by reconstituting the historical logic with its
historical inputs.
The migration process has one goal: reproduce the historical data adjusted for data type and
format differences keeping the data rules intact. While there may be pressure to improve the data
– be it to correct, enrich, or mask certain aspects – which is to be welcomed since these demands
are a sponsorship opportunity – such improvements should be implemented as a separate step
once the data is migrated, thereby isolating change and retaining proof of faithful data
reproduction.
Once again, LLM advancements make understanding the differences a breeze; in this case, we
engage the Databricks Assistant, which employs Databrick’s own LLM service, to report ANSI
SQL peculiars.

http://www.ctidata.com

www.ctidata.com 13 Rev. 11-Jun-25

One main difference is that all character fields map to the STRING type; therefore, the character
limit enforcement of VARCHAR(n) is lost and must be handled in logic if required.
[For the current Databricks data types, see https://docs.databricks.com/en/sql/language-
manual/sql-ref-datatypes.html]
We observe below Databricks automatically handling this ANSI SQL behavior where
VARCHAR(10) and REAL are converted to the Databricks SQL equivalent.

http://www.ctidata.com
https://docs.databricks.com/en/sql/language-manual/sql-ref-datatypes.html
https://docs.databricks.com/en/sql/language-manual/sql-ref-datatypes.html

www.ctidata.com 14 Rev. 11-Jun-25

Since we will be migrating data from Snowflake, we must examine how Snowflake’s non-ANSI
data types will be handled.

The Databricks Assistant is a little too high level; Snowflake also supports FLOAT4 and
FLOAT8. Databricks SQL errors out when presented with these, which is reasonable since they
are not ANSI standard, and the Databricks Assistant recommends using FLOAT as the proper
alternative.

http://www.ctidata.com

www.ctidata.com 15 Rev. 11-Jun-25

A SQL programmer might address data conversion by developing go-between migration logic:
reading the source data via the Snowflake SQL client, casting the data to ANSI standard, and
then writing the result to Databricks using the Databricks SQL client.
However, in the case of Snowflake, we can use Snowflake’s internal conversion engine by way
of Parquet, the highly efficient and flexible open data store format supported by the major data
platforms.
When a Snowflake table is exported to Parquet, its native data types are converted to Parquet's.
When imported to Databricks, the reverse happens, and since Databricks is heavily aligned with
Parquet, little change is necessary. Essentially, Snowflake is exporting its tables into structures
that align well with Databricks.

We can transfer tables with hundreds to billions of
rows, bypassing the need for complex and
computationally expensive conversion pipelines. Of
course, some differences must be inspected afterward,
such as VARCHAR(n).

http://www.ctidata.com
https://app.napkin.ai/page/CgoiCHByb2Qtb25lEiwKBFBhZ2UaJGE1ZDJmZmM1LWJmNDItNDlkNi05MjI4LTFmZTk5OGM2ZDIzMw?s=1

www.ctidata.com 16 Rev. 11-Jun-25

The Databricks Assistant provides the following elaboration regarding Parquet data types:

Meta-data stored in Parquet elaborates the primitive types, ensuring proper interpretation as the
appropriate ANSI SQL data type. Here is an example of this process after transferring a patient
ADMISSIONS table from Snowflake to Databricks. The screenshots on the next page are from the
native SQL workbooks of both products.

http://www.ctidata.com

www.ctidata.com 17 Rev. 11-Jun-25

A cardinality count provides some assurance the data is transferred correctly:

http://www.ctidata.com

www.ctidata.com 18 Rev. 11-Jun-25

6.0 Dissecting a Data Example

Our work in complex data solutions provides access to diverse data environments, one being an
anonymized dataset of 4.75 million clinical diagnoses that we used to develop disease
forecasting algorithms stored in Snowflake. In this walkthrough, we shall migrate the entire
dataset to Databricks, reproducing the schema and stored values.
We export the Snowflake tables to Parquet and subsequently import them into Databricks using a
Microsoft Azure storage container to hold the Parquet intermediary objects. We establish the
container in the same region as our Snowflake and Databricks tenants for speed and reduced
egress charges. As stated earlier, this is faster and cheaper than using a live database-to-database
SQL connection to read from the source and write to the target, benefiting from Parquet as the
data type go-between.

6.1 Environment Setup

For our purposes, Databricks provides two IDEs for working with SQL code. The first is their
Jupyter-based notebook; although primarily for Python, it can also process SQL using the “%
SQL” magic declaration of Jupyter. Its objects are labeled “Notebook” within the Databricks
workspace explorer.
The second is a SQL IDE that processes SQL expressions; its objects are labeled “Query” within
the workspace explorer. It is similar in concept to a Snowflake worksheet; for convenience,
we’ll call it the “SQL worksheet” environment.
A SQL worksheet is attached to a serverless SQL configuration – called a “warehouse” – that
defines the initial size of the compute that automatically responds to demand. In contrast, a
Notebook is attached to a cluster configuration that identifies the compute plus runtime
environment and must always be running to respond to demand.
There is an unusual exception: a Jupyter Notebook of SQL cells may execute on the serverless
SQL warehouse; however, it will refuse if there are Python or other non-SQL cells.
Finally, an external IDE (such as Visual Studio) may also connect to a cluster or a SQL
warehouse for performing development iterations.
Regardless of where execution occurs, whether on a cluster or serverless warehouse, all data is
processed and stored within the Databricks platform and instantly accessible to both.

http://www.ctidata.com

www.ctidata.com 19 Rev. 11-Jun-25

The following three screenshots demonstrate these options:

http://www.ctidata.com

www.ctidata.com 20 Rev. 11-Jun-25

Because our data migration code needs to coordinate data movement from Snowflake to Azure to
Databricks, we shall use the flexibility of a Notebook to step through this sequence, sometimes
switching between Python and
SQL cells. We’ve provisioned a
minimally sized cluster for this
purpose.

We also need an ADLS storage container with a shared access signature (SAS) token that the
Notebook will use. It's more interesting to see the container populated with the exported tables in
the screenshot below, but it is empty until Step 1 is completed later.

6.2 Secrets and Run-Time Variables Setup

It is always preferable to use a "secrets vault” rather than environment variables to store and
retrieve sensitive credentials; in this case, we've used Databricks Secrets. We set up the secrets
by opening the cluster terminal and using the CLI.

http://www.ctidata.com

www.ctidata.com 21 Rev. 11-Jun-25

The Databricks Notebook is “secrets aware”, displaying “redacted” for variables assigned from a
Databricks Secret. We load the secrets into a Python dictionary

and use them to populate the connection parameters for Snowflake, Databricks, and ADLS.

We create a convenience function, snow_exec(), that wraps the Snowflake Python library to
return a dictionary of column names with row data.

http://www.ctidata.com

www.ctidata.com 22 Rev. 11-Jun-25

Now, we’re ready to work on our first target: transferring 4.75m rows of diagnosis data to
Databricks.

Step 1: Export the Source Table from Snowflake to the Cloud Container

The ADLS container is identified to Snowflake as a stage area:

This statement employs a Python f-string using the connection variables defined earlier:

snowStage The name within Snowflake for the stage area

snowBlobURL Location of the stage's storage, in this case, the Azure container

http://www.ctidata.com

www.ctidata.com 23 Rev. 11-Jun-25

azSAStoken The Azure token that grants access to the container

We execute a COPY INTO to generate the collection of Parquet objects in the stage area:

tableName DIAGNOSES_ICD

The Snowflake statement converts the table into snappy compressed Parquet objects, each about
25MB in size, under a folder with the same name as the table. We query ADLS to observe the
objects:

These objects can now be loaded into Databricks.

Step 2: Import the Parquet Objects into Databricks SQL under Unity Catalog

First, we set up identifiers to make the process repeatable for different tables:

http://www.ctidata.com

www.ctidata.com 24 Rev. 11-Jun-25

Notice the target table patient_import.silver.DIAGNOSES_ICD is described using the 3-level
namespace of Databricks Unity Catalog: <catalog>.<schema>.<data> similarly to the way
Snowflake manages
datasets.
This requires the
catalog and schema
must already exist.

As the data is loaded,
Unity Catalog automatically collects the meta-data from the Parquet objects. The load process is
like the earlier export process but is reversed.

http://www.ctidata.com

www.ctidata.com 25 Rev. 11-Jun-25

Notice the row count matches the earlier export count. The data is managed through Unity
Catalog, which provides a remarkably helpful “starter” glossary definition, demonstrating how
effectively GenAI seamlessly integrates into the user workflow.

Step 3: Rinse

The rinsing step is to validate the data. We've already noted the row counts match. We examine
the meta-data equivalence:

http://www.ctidata.com

www.ctidata.com 26 Rev. 11-Jun-25

As expected, VARCHAR has been converted to STRING. We test the cardinality of the 4.75 million
rows by checking the counts of the distinct SUBJECT_ID:

Step 4: Repeat
The same process is repeated for the remaining schema tables.
Keep in mind the method we've presented is to demonstrate concepts. It lacks robust error
handling and needs deeper data validation that should be automated.
Once all the necessary tables are transferred, a business query demonstrates accurate
relationships, cardinality, consistency of field values, and their correct filtering and aggregation
handling.
Here is the "pneumonia" business statement from earlier, first running in Snowflake, the original
source:

http://www.ctidata.com

www.ctidata.com 27 Rev. 11-Jun-25

In the code, the variable business_sql_test holds the statement, which is syntax adapted for
Snowflake using localize_sql(), a simple wrapper we created for the popular SQLglot library.
Here is the same statement producing the same results, executing in Databricks:

Although unnecessary, on the next page you can see the full statement running within Databricks
SQL producing the same results, illustrating that Databricks SQL and the Databricks cluster are
interacting with the same data store within the Databricks platform.

http://www.ctidata.com

www.ctidata.com 28 Rev. 11-Jun-25

http://www.ctidata.com

www.ctidata.com 29 Rev. 11-Jun-25

7.0 Conclusion

As we have shown, the mechanics of transferring data from Snowflake to Databricks are not
complicated; large datasets can be relocated to the Databricks platform for initial
experimentation within days.
On the other hand, moving data with all its application logic and other dependencies must be
handled as you would any platform conversion process.
The key to success is early experimentation and scoping the work by data product, as in the
outline below:

–

Strategy & Prototype

▪ Target Prototype Data Product

▪ Source/sink technical integrations

▪ Security & Governance

▪ Conversion automation

▪ Refactoring approach

▪ Test automation

▪ Improvements to demonstrate

Migration Landscape

▪ End-to-end data dependencies

▪ SQL execution profiles

▪ SQL code inventory-complexity

▪ Security & governance

▪ Pipeline interfaces/volumes

▪ Consumption interfaces/patterns

▪ Known data gaps/idiosyncrasies

▪ Service level objectives

Migration Process

▪ Data Product specific architecture

▪ Data Product sequencing

▪ Security & Governance phasing

▪ Up/downstream teams impacted

▪ Testing cycles & acceptance

▪ Cutover & decommissioning

▪ Resource cost projections

Data Product Migrations

▪ DataOps process environments

▪ Conversion & test execution

▪ Onboard governance & security

▪ Monitor resource/metering

Prototype & Discover (6 weeks) Define & Run Repeating Migrations (variable)

Start by targeting a simple data product to develop an appreciation for the work while exploring
Databricks’ capabilities during the process, and keep these principles in mind:

http://www.ctidata.com

www.ctidata.com 30 Rev. 11-Jun-25

Technical Coverage

SQL is mostly SQL

Automation tools are a bonus

Specialized Logic

Rethink & build

Compute right-sizing

Test-and-calibrate

Security

More granular, more options

Data pipelines

Re-point and go

Isolate the Change

Mapping inter-dependencies by data product

across the data, logic, source & sink
applications

Applying automated test frameworks

to rigorously and continuously validate
migration work

Defining the transition & decommission plan

synchronized with cost & schedule
expectations

Beyond the Forklift
Examining if a forklift strategy is a lost opportunity is appropriate. Such changes are a chance to
address technical debt; moving to Databricks opens new possibilities for rethinking the end-to-
end environment with far-reaching benefits that can transform your data’s time-to-value,
accessibility, trust, and cost by way of these benefits:

• Consolidate data warehousing and data science, eliminating separate systems and their
data transfer complexities.

• Consolidate data engineering under a unified pipeline, storage, and data processing stack.
• Complete complex analytical queries orders of magnitude faster by leveraging the

Databricks massive scalability query engine.
• Unify business rules and data governance, eliminating inconsistencies and improving

data trust.
• Replace analytic tooling with self-service GenAI-enabled Exploratory Data Analysis.

http://www.ctidata.com

www.ctidata.com 31 Rev. 11-Jun-25

About CTI Data

Our data and analytics experts specialize in Digital Transformation, Advanced Analytics, AI/ML,
and Data Marketplaces. This experience provides valuable insights and expertise. We are adept at
understanding best practices, identifying potential pitfalls, and customizing solutions to meet
your unique needs.
By partnering with us, you can drive value from digital transformation efforts as we examine
your business strategy, analyze your current state, pinpoint opportunities, and develop a strategic
roadmap that aligns technology investments with strategic goals. We commit to collaborating
closely with you and sharing accountability for achieving mutual goals.
Contact us to explore our real-world case studies and learn more about how we have helped our
clients grow and create business value.

Disclaimer: This whitepaper is for informational purposes only and does not constitute professional advice. While
we have endeavored to ensure the accuracy and completeness of the information contained herein, CTI Data makes
no representations or warranties regarding its accuracy or completeness. The information presented is based on
current knowledge and understanding and may be subject to change. References to third-party data or findings are
for informational purposes only, and CTI Data assumes no responsibility for the accuracy of such third-party
information. The limitations of the technologies or methodologies discussed in this whitepaper should be carefully
considered before applying them in any specific context.

http://www.ctidata.com
mailto:info@ctidata.com

