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Migrating SQL Data to Databricks 
A Foundation for Digital Transformation 

 

1.0 Introduction 

Shifting SQL workloads to a unified Data Infrastructure platform is increasingly important. 
Here's why: Historically, IT automation depended solely on structured data. Today, generative AI 
(GenAI) can surface information in the hordes of unstructured data, powering new automations.  
Consequently, our systems must marry the unstructured "analog" data of the physical world with 
its structured "digital" twin. This requires a new perspective on IT data infrastructure.  Existing 

infrastructure evolved fragmented: structured data residing 
in a row or columnar databases, object data residing as 
"blobs" in “containers” or “buckets,” and file data residing 
in file systems — each with distinct metadata and access 
controls. 
Such fragmentation is now a bottleneck; we need an 
infrastructure that treats structured and unstructured data 
as an integrated whole, along with a single metadata and 
relationship catalog, unified governance and control, 

within a uniform access platform. 
The technology vendors have shoehorned their solutions towards this goal, adapting their 
SQL/NoSQL databases for object storage or extending their data lakes for SQL, with further 
adaptations for a new data class, the high-dimension vectors crucial to GenAI. 
It’s a point-in-time mess, leaving the 
data engineer and end-user to work 
around the constraints of these 
platform legacies.  
But it’s improving, and the vendors 
most relevant are the cloud data 
titans: Google, Microsoft, Amazon, 
Snowflake, and Databricks, with 
Salesforce and Oracle vying for their 
place. 
The desired solution is as 
straightforward as depicted on the 
right. 
The table on the next page calls out 
how well-positioned Databricks is for 
meeting this goal with the arrival of their serverless SQL capability in June 2022, deeply 
integrated with their open, multi-modal data platform heritage and processing tools.  
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Databricks’ Position 

Any compute model ➜ Serverless (SaaS) or managed (PaaS) 

Any processing model ➜ Python, R, Scala, Java, SQL 

Rapid delivery ➜ Built-in DevOps, DataOps, MLOps 

Process all types of 
data 

➜ Data Lake with choices of structured abstractions 

One data framework ➜ From ingestion to micro-streaming 

Single ecosystem, 
massive scale 

➜ Reduce technology silos, one platform for all needs 

Cloud vendor 
abstraction 

➜ Mix and match any Cloud 

Seamless data 
federation 

➜ External data is an equal citizen 

Safe data sharing ➜ Internal and external teams have governed access 

Uniform governance 
& control ➜ All data, all code, all security, all deployments 

No vendor lock-in ➜ 100% open technology 

Consequently, running your SQL workloads on Databricks means you are futureproofing the 
data’s value, regardless of how the data may need to evolve and integrate.  Furthermore, even for 
one-off throw-away SQL workloads, Databricks is positioned as a perfectly competent platform. 
To explore what is involved in migrating to Databricks, we need a legacy platform to make the 
details meaningful, so in this case, we assume Snowflake is the legacy.   
These two platforms, with very different origins, now frequently compete as their technologies 
expanded and began to overlap. The chart below helps frame the current state but keep in mind 
we are singularly focused on the SQL aspects in this document. 
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Snowflake  zero administration SQL 
service addressing analytic use cases 

Databricks  open-source computing and 
data service addressing data science use 
cases 

Serverless SQL platform Ecosystem tying together compute 
provisioning, structured and unstructured 
data management, and ML management 
Capable of serverless SQL operation 
(transparent dynamic provisioning of 
resources) 

Supports non-SQL logic as a separate 
capability callable from SQL 

Supports SQL processing as an equal 
citizen to its other computing capabilities 

Data pipelining and orchestration require 
separate tooling 

Integrates batch and real-time data 
pipelining and orchestration 

Federates structured and semi-structured 
data 

Federates any data 

Governance and catalog addresses data 
only 

Governed by a unified data and process 
manager with AI-assisted glossary 
generation 

 Plugins for popular BI platforms AI-assisted exploratory data analysis 
(EDA) tooling with plugins for popular BI 
platforms 

 

2.0 Database Migration Concerns 

While SQL database platforms are conceptually similar – reflecting the power of SQL as a 
standard – all the platforms have feature sets with real differences, which, from a migration 
point-of-view, raise these migration concerns: 
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 Concern 

Data Adapting data types and converting formats 

Logic Adapting logic residing in the external programs (e.g. SQL statements) or in the data 
platform (e.g. Stored Procedures) to ensure functional equivalence 

Process Reproducing the program logic that controls data processing cycles 

Security Reproducing controls that prevent improper data access and creation 

Operations Reproducing infrastructure-as-code and other platform automation such as identity 
management, metering, and chargebacks 

Meta-data Transferring data descriptions and business rule descriptions 

 

Applying these concerns specific to migrating Snowflake to Databricks, we note these strategies: 

Technical Element Migration Considerations Migration Strategies 

Data and Tables 

Data types 
Similar, special handling for variants 
and geospatial 

Review DDL, adapt dependent 
SQL 

Views, materialized 
views 

Same features and methods 
Apply SQL dialect conversion 
automation 

General Logic   

SQL dialect Similar, ANSI SQL centric with 
minor differences 

Apply SQL dialect conversion 
automation 

Ingestion staging Same features, similar methods 
Repoint ingestion tool, or replace 
with Databricks Autoloader 

Specialized Logic   

User Defined 
Functions 

Same features with syntax & 
language differences 

Convert syntaxes, maintain 
function signature 

Stored Procedures 
and Triggers 

Needs alternative solution 
Replace with UDFs or Delta Live 
Tables 
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SQL refactoring 
Identify high-cost queries (using 
query profiler) 

Enhance with Databricks 
hashing/join features 

Process Control   

CLI scripts 
CLI's different, with little 
equivalence 

Assess CLI script logic and 
recreate using Python, Databricks 
Jobs, etc. 

Orchestration Simple to convert Snowflake Tasks 
Use richer features of Databricks 
Workflow (or repoint external tool) 

Security   

Data privacy 
Data masking, PII detection, clean 
rooms, audit differences 

Map privacy setup, leverage Unity 
Catalog for data provenance 

Identities, access 
control 

Similar privilege/permission mgt, 
different row level security 

Map and improve with Unity 
Catalog 

Operational Control   

Data clustering 
Clustering concepts similar, 
different syntaxes, less automated 

Apply additional clustering based 
on query cost profiles 

Resources, 
chargebacks 

Different models, Databricks is 
more granular 

Rethink to leverage Databricks tag-
based granular capture 

Elastic controls 
Different methods/latency for 
automated scaling up/down 

Assess scaling latency and use 
Databricks' more granular control 

 

The top-of-mind topics are the first two, data and logic; we will dissect the first, the data topic, 
and touch on the logic topic, leaving a fuller examination for a later paper. 
 

3.0 Data Product Trace Maps 

This diagram depicts the typical elements of an analytic data environment: various upstream 
services execute embedded SQL logic, stored procedures, or user-defined functions to produce or 
change data, with various downstream services consuming and sometimes producing or changing 
data. 
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We need a trace map of the dependency pathways for all the logic and related data in scope for 
the migration.  A good practice is to scope the work by data product.  
One of the beauties, from the point of view of mapping these dependency paths, is that SQL 
logic is almost always stateless: all state is stored in the data tables, the exception is when a 
stored procedure, trigger or custom function affects a variable. 
This means modern data lineage tools can generate the trace map, like the diagram below, by 
probing the program objects of each deployed technology, extracting the logic, and identifying 
the discrete data 
elements that are 
touched, inferring 
the logic-to-data 
pathways.  
But even so, a data 
engineer should 
inspect the results 
and fill in the gaps 
as necessary. 
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4.0 Migrating Logic 

Logic migration is a distinctly different endeavor from data migration.  The upstream and 
downstream technologies need two modifications to switch to the future platform: their data 
endpoint connections must be changed, which is simple enough, and their logic must be adapted 
to the differences in data types, data formats, logic dialects, and invocation methods.   
Most SQL logic needs only minor changes. There is one exception: Stored Procedures and 
Triggers.  Databricks SQL does not yet provide these features; if your data heavily depends on 
them, some “rethink” work will be necessary to recreate their functionality. 
To get a feel for the SQL changes, consider the query below, which retrieves the top 5 
pneumonia-related admissions for the past year with a mortality count.  A typical question with a 
typical SQL expression. 

SELECT 
   concat(DR.DESCRIPTION, 
      ' (', DR.DRG_CODE, ')') 
  AS "DRG Description", 
   count(DISTINCT A.HADM_ID) 
  AS "Pneumonia Diagnosis", 
   count( 
      DISTINCT CASE 
         WHEN A.HOSPITAL_EXPIRE_FLAG = TRUE 
         THEN A.HADM_ID 
         ELSE NULL 
      END 
   ) AS "Mortality Count" 
FROM ADMISSIONS AS A 
JOIN DIAGNOSES_ICD AS D 
   ON A.HADM_ID = D.HADM_ID 
JOIN D_ICD_DIAGNOSES AS DI 
   ON D.ICD_VER_CODE = DI.ICD_VER_CODE 
JOIN DRGCODES AS DR 
   ON A.HADM_ID = DR.HADM_ID 
WHERE 
   date_part(YEAR, A.ADMITTIME) = 2024 
   AND DI.LONG_TITLE ILIKE '%pneumonia%' 
GROUP BY 
   DR.DESCRIPTION, 
   DR.DRG_CODE 
ORDER BY 
   "Pneumonia Diagnosis" DESC NULLS LAST 
LIMIT 5 

SELECT 
   concat(DR.DESCRIPTION, 
      ' (', DR.DRG_CODE, ')') 
  AS `DRG Description,` 
   count(DISTINCT A.HADM_ID) 
  AS `Pneumonia Diagnosis`, 
   count( 
      DISTINCT CASE 
         WHEN A.HOSPITAL_EXPIRE_FLAG = TRUE 
         THEN A.HADM_ID 
         ELSE NULL 
      END 
   ) AS `Mortality Count` 
FROM ADMISSIONS AS A 
JOIN DIAGNOSES_ICD AS D 
   ON A.HADM_ID = D.HADM_ID 
JOIN D_ICD_DIAGNOSES AS DI 
   ON D.ICD_VER_CODE = DI.ICD_VER_CODE 
JOIN DRGCODES AS DR 
   ON A.HADM_ID = DR.HADM_ID 
WHERE 
   EXTRACT(YEAR FROM A.ADMITTIME) = 2024 
   AND DI.LONG_TITLE ILIKE '%pneumonia%' 
GROUP BY 
   DR.DESCRIPTION, 
   DR.DRG_CODE 
ORDER BY 
   `Pneumonia Diagnosis` DESC NULLS LAST 
LIMIT 5 

 

What changed? The Snowflake date_part() function is replaced with the ANSI SQL extract() 
function, and double quotes for enclosing identifiers are replaced with back-ticks (e.g. `Mortality 
Count`). 
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We used translation technology to make these changes, eliminating the labor of syntactic 
correction.  However, the advancement of Large Language Models is fast displacing this method.  
Nowadays, you can direct your LLM to review the reference documentation (see list below) 
along with your source code to provide conversion analysis and “first-pass” converted code.  
Although not yet perfect, the pace of improvement is remarkable.  Databricks SQL has fast-
evolving enhancements, making the LLM output generated from the reference documentation 
invaluable compared to almost immediately dated guides and other alternatives. 
Snowflake and Databricks SQL Reference Documentation: 
https://docs.snowflake.com/en/sql-reference/sql-all 

https://docs.snowflake.com/en/sql-reference/functions-all 

https://docs.databricks.com/en/sql/language-manual/sql-ref-datatypes.html 

https://docs.databricks.com/en/sql/language-manual/sql-ref-functions-builtin-alpha.html 

 

Snowflake Function Databricks SQL Equivalent Notes 

GET_DDL(object_name) SHOW CREATE TABLE table_name (for 

tables), query 

information_schema.TABLES or 

information_schema.COLUMNS for others 

Databricks uses SHOW CREATE for 

tables. Use information_schema 

for programmatic metadata access. 

SYSTEM$GET_PREDECESSOR_R
ETURNED_COLUMNS(table_na
me) 

Not Directly Available. Consider Delta Lake 

Change Data Feed. 

Snowflake-specific for CDC. 

Databricks uses Delta Lake CDC. 

SYSTEM$CLUSTERING_INFORM
ATION(table_name) 

Analyze information_schema.COLUMNS 

statistics; for Delta Lake, DESCRIBE DETAIL 
table_name. 

Infer clustering from stats. Delta Lake 

shows partitioning/Z-Ordering. 

SYSTEM$TASK_HISTORY(...) Query system.task_history (if using 

Databricks Workflows). 

Specific to Snowflake Tasks. 

Databricks Workflows has its own 

history table. 

SYSTEM$PIPE_STATUS('pipe
_name') 

Monitor Auto Loader stream status via Spark 

Structured Streaming APIs or Delta Live Tables 

UI/APIs. 

Specific to Snowflake Pipes. 

Databricks uses Auto Loader/DLT, 

monitored differently. 

CURRENT_REGION() Not Directly Available as a SQL function. Part of 

workspace config. 

Databricks region is a configuration 

setting. 

GET_OBJECT_S3('s3://...'
) 

spark.read.format('...').load('s3:/
/...') (replace ‘…’ with format). 

Databricks uses Spark’s data source 
API. 

STAGE_FILES(...) (external 

stages) 

Use dbutils.fs.ls('s3://...') or cloud 

provider SDKs. 

Databricks interacts with cloud 

storage directly. 

CONVERT_TIMEZONE(target_
timezone, 

from_utc_timestamp(to_utc_timestamp
(timestamp, source_timezone), 
target_timezone) 

Convert to UTC first if source has 

timezone. 

http://www.ctidata.com
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Snowflake Function Databricks SQL Equivalent Notes 

source_timezone, 
timestamp) 

DATE_PART(date_or_time_p
art, expression) 

extract(date_or_time_part FROM 
expression) or year(expression), 

month(expression), etc. 

Databricks offers both general and 

specific date/time functions. 

DATE_TRUNC(date_or_time_
part, timestamp) 

date_trunc(date_or_time_part, 
timestamp) 

Function name is the same. 

MASK(input_string, ...) Requires custom UDF or use Unity Catalog’s 
data masking. 

Snowflake’s MASK is built-in; 

Databricks needs UDF or Unity 

Catalog. 

STRTOK_TO_ARRAY(string, 
delimiter) 

split(string, delimiter) Different function name. 

SPLIT_TO_TABLE(input, 
delimiter) 

explode(split(input, delimiter)) Use explode after splitting. 

RLIKE(subject, pattern) subject rlike pattern Uses the rlike operator. 

LIKEANY(string, 
pattern1, pattern2, ...) 

string LIKE pattern1 OR string LIKE 
pattern2 OR ... 

Requires explicit OR conditions. 

SOUNDEX(string) Requires custom UDF or external Spark library. Snowflake built-in; Databricks needs 

UDF/external library. 

LEVENSHTEIN(string1, 
string2) 

Requires custom UDF or external Spark library. Similar to SOUNDEX. 

LISTAGG(expression [, 
delimiter]) [WITHIN 
GROUP (ORDER BY ...)] 
[ON OVERFLOW TRUNCATE 
'string' [WITHOUT COUNT 
| WITH COUNT]] 

array_join(collect_list(expression) 
WITHIN GROUP (ORDER BY 
ordering_expression), delimiter) 
OVER (PARTITION BY 
grouping_expression) 

WITHIN GROUP moved inside 

collect_list. Manual overflow 

handling. 

BITAND(expr1, expr2) expr1 & expr2  

BITOR(expr1, expr2) expr1 | expr2  

BITXOR(expr1, expr2) expr1 ^ expr2  

BITNOT(expr1) ~ expr1  

IFF(condition, 
true_value, false_value) 

CASE WHEN condition THEN true_value 
ELSE false_value END 

Standard SQL CASE WHEN. 

NVL(expr1, expr2) coalesce(expr1, expr2) Standard SQL coalesce. 

ZEROIFNULL(numeric_expr) CASE WHEN numeric_expr IS NULL THEN 
0 ELSE numeric_expr END 

Achieved using CASE WHEN. 
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Snowflake Function Databricks SQL Equivalent Notes 

TRY_CAST(source_value AS 
data_type) 

TRY_CAST(source_value AS data_type) 

(newer), or CASE WHEN TRY_CAST(...) IS 
NOT NULL THEN TRY_CAST(...) END 

TRY_CAST available in recent 

runtimes. 

PARSE_JSON(string) from_json(string, 
schema_of_json(string)) 

Requires schema; schema_of_json 

can infer. 

GET_PATH(variant, path) get_json_object(variant, path) or 

variant.path.to.element 

Both function and dot notation 

available. 

FLATTEN(input => 
array_or_object) 

explode(input) Uses the explode function. 

XMLGET(xml, tag) Requires Spark XML libraries (e.g., xml_xpath 

after parsing). 

Databricks uses Spark for XML 

processing. 

POLICY_CONTEXT(...) Not Directly Available. Use Unity Catalog 

features. 

Databricks uses Unity Catalog for 

security policies. 

ARRAY_CONSTRUCT(...) array(...) Databricks array() function. 

 

5.0 Migrating Data 

Historical data is unique in that it reflects business rules from the past, manifest in the data logic 
and the data inputs at the time, which may no longer be available.  It is almost always preferable 
to migrate historical data rather than regenerate it by reconstituting the historical logic with its 
historical inputs. 
The migration process has one goal: reproduce the historical data adjusted for data type and 
format differences keeping the data rules intact.  While there may be pressure to improve the data 
– be it to correct, enrich, or mask certain aspects – which is to be welcomed since these demands 
are a sponsorship opportunity – such improvements should be implemented as a separate step 
once the data is migrated, thereby isolating change and retaining proof of faithful data 
reproduction. 
Once again, LLM advancements make understanding the differences a breeze; in this case, we 
engage the Databricks Assistant, which employs Databrick’s own LLM service, to report ANSI 
SQL peculiars. 
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One main difference is that all character fields map to the STRING type; therefore, the character 
limit enforcement of VARCHAR(n) is lost and must be handled in logic if required.  
[For the current Databricks data types, see https://docs.databricks.com/en/sql/language-
manual/sql-ref-datatypes.html ] 
We observe below Databricks automatically handling this ANSI SQL behavior where 
VARCHAR(10) and REAL are converted to the Databricks SQL equivalent. 
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Since we will be migrating data from Snowflake, we must examine how Snowflake’s non-ANSI 
data types will be handled. 
 

 

 

The Databricks Assistant is a little too high level; Snowflake also supports FLOAT4 and 
FLOAT8. Databricks SQL errors out when presented with these, which is reasonable since they 
are not ANSI standard, and the Databricks Assistant recommends using FLOAT as the proper 
alternative. 
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A SQL programmer might address data conversion by developing go-between migration logic: 
reading the source data via the Snowflake SQL client, casting the data to ANSI standard, and 
then writing the result to Databricks using the Databricks SQL client.  
However, in the case of Snowflake, we can use Snowflake’s internal conversion engine by way 
of Parquet, the highly efficient and flexible open data store format supported by the major data 
platforms. 
When a Snowflake table is exported to Parquet, its native data types are converted to Parquet's. 
When imported to Databricks, the reverse happens, and since Databricks is heavily aligned with 
Parquet, little change is necessary. Essentially, Snowflake is exporting its tables into structures 
that align well with Databricks.  

We can transfer tables with hundreds to billions of 
rows, bypassing the need for complex and 
computationally expensive conversion pipelines. Of 
course, some differences must be inspected afterward, 
such as VARCHAR(n).  
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The Databricks Assistant provides the following elaboration regarding Parquet data types: 
 

 

Meta-data stored in Parquet elaborates the primitive types, ensuring proper interpretation as the 
appropriate ANSI SQL data type.  Here is an example of this process after transferring a patient 
ADMISSIONS table from Snowflake to Databricks. The screenshots on the next page are from the 
native SQL workbooks of both products. 
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A cardinality count provides some assurance the data is transferred correctly: 
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6.0 Dissecting a Data Example 

Our work in complex data solutions provides access to diverse data environments, one being an 
anonymized dataset of 4.75 million clinical diagnoses that we used to develop disease 
forecasting algorithms stored in Snowflake.  In this walkthrough, we shall migrate the entire 
dataset to Databricks, reproducing the schema and stored values. 
We export the Snowflake tables to Parquet and subsequently import them into Databricks using a 
Microsoft Azure storage container to hold the Parquet intermediary objects.  We establish the 
container in the same region as our Snowflake and Databricks tenants for speed and reduced 
egress charges.  As stated earlier, this is faster and cheaper than using a live database-to-database 
SQL connection to read from the source and write to the target, benefiting from Parquet as the 
data type go-between. 

6.1 Environment Setup 

For our purposes, Databricks provides two IDEs for working with SQL code.  The first is their 
Jupyter-based notebook; although primarily for Python, it can also process SQL using the “% 
SQL” magic declaration of Jupyter.  Its objects are labeled “Notebook” within the Databricks 
workspace explorer. 
The second is a SQL IDE that processes SQL expressions; its objects are labeled “Query” within 
the workspace explorer.  It is similar in concept to a Snowflake worksheet; for convenience, 
we’ll call it the “SQL worksheet” environment.   
A SQL worksheet is attached to a serverless SQL configuration – called a “warehouse” – that 
defines the initial size of the compute that automatically responds to demand.  In contrast, a 
Notebook is attached to a cluster configuration that identifies the compute plus runtime 
environment and must always be running to respond to demand.   
There is an unusual exception: a Jupyter Notebook of SQL cells may execute on the serverless 
SQL warehouse; however, it will refuse if there are Python or other non-SQL cells.   
Finally, an external IDE (such as Visual Studio) may also connect to a cluster or a SQL 
warehouse for performing development iterations. 
Regardless of where execution occurs, whether on a cluster or serverless warehouse, all data is 
processed and stored within the Databricks platform and instantly accessible to both. 
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The following three screenshots demonstrate these options: 
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Because our data migration code needs to coordinate data movement from Snowflake to Azure to 
Databricks, we shall use the flexibility of a Notebook to step through this sequence, sometimes 
switching between Python and 
SQL cells. We’ve provisioned a 
minimally sized cluster for this 
purpose. 
 

We also need an ADLS storage container with a shared access signature (SAS) token that the 
Notebook will use. It's more interesting to see the container populated with the exported tables in 
the screenshot below, but it is empty until Step 1 is completed later. 
 

 

 

6.2 Secrets and Run-Time Variables Setup 

It is always preferable to use a "secrets vault” rather than environment variables to store and 
retrieve sensitive credentials; in this case, we've used Databricks Secrets. We set up the secrets 
by opening the cluster terminal and using the CLI. 
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The Databricks Notebook is “secrets aware”, displaying “redacted” for variables assigned from a 
Databricks Secret. We load the secrets into a Python dictionary 

 

 

and use them to populate the connection parameters for Snowflake, Databricks, and ADLS. 
 

 

 

We create a convenience function, snow_exec(), that wraps the Snowflake Python library to 
return a dictionary of column names with row data. 
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Now, we’re ready to work on our first target: transferring 4.75m rows of diagnosis data to 
Databricks. 
 

Step 1: Export the Source Table from Snowflake to the Cloud Container 

The ADLS container is identified to Snowflake as a stage area: 

 

 

This statement employs a Python f-string using the connection variables defined earlier:   

snowStage The name within Snowflake for the stage area 

snowBlobURL Location of the stage's storage, in this case, the Azure container 
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azSAStoken The Azure token that grants access to the container 

We execute a COPY INTO to generate the collection of Parquet objects in the stage area: 

tableName DIAGNOSES_ICD 

 

The Snowflake statement converts the table into snappy compressed Parquet objects, each about 
25MB in size, under a folder with the same name as the table. We query ADLS to observe the 
objects: 

 

These objects can now be loaded into Databricks. 
 

Step 2: Import the Parquet Objects into Databricks SQL under Unity Catalog 

First, we set up identifiers to make the process repeatable for different tables: 
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Notice the target table patient_import.silver.DIAGNOSES_ICD is described using the 3-level 
namespace of Databricks Unity Catalog: <catalog>.<schema>.<data> similarly to the way 
Snowflake manages 
datasets. 
This requires the 
catalog and schema 
must already exist. 
 

As the data is loaded, 
Unity Catalog automatically collects the meta-data from the Parquet objects. The load process is 
like the earlier export process but is reversed. 
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Notice the row count matches the earlier export count.   The data is managed through Unity 
Catalog, which provides a remarkably helpful “starter” glossary definition, demonstrating how 
effectively GenAI seamlessly integrates into the user workflow. 
 

 

 

Step 3: Rinse 

The rinsing step is to validate the data. We've already noted the row counts match. We examine 
the meta-data equivalence: 
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As expected, VARCHAR has been converted to STRING. We test the cardinality of the 4.75 million 
rows by checking the counts of the distinct SUBJECT_ID: 

 

Step 4: Repeat 
The same process is repeated for the remaining schema tables.  
Keep in mind the method we've presented is to demonstrate concepts.  It lacks robust error 
handling and needs deeper data validation that should be automated.  
Once all the necessary tables are transferred, a business query demonstrates accurate 
relationships, cardinality, consistency of field values, and their correct filtering and aggregation 
handling. 
Here is the "pneumonia" business statement from earlier, first running in Snowflake, the original 
source: 
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In the code, the variable business_sql_test holds the statement, which is syntax adapted for 
Snowflake using localize_sql(), a simple wrapper we created for the popular SQLglot library.  
Here is the same statement producing the same results, executing in Databricks: 

 

Although unnecessary, on the next page you can see the full statement running within Databricks 
SQL producing the same results, illustrating that Databricks SQL and the Databricks cluster are 
interacting with the same data store within the Databricks platform. 
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7.0 Conclusion 

As we have shown, the mechanics of transferring data from Snowflake to Databricks are not 
complicated; large datasets can be relocated to the Databricks platform for initial 
experimentation within days. 
On the other hand, moving data with all its application logic and other dependencies must be 
handled as you would any platform conversion process.   
The key to success is early experimentation and scoping the work by data product, as in the 
outline below: 
 

–

Strategy & Prototype

▪ Target Prototype Data Product

▪ Source/sink technical integrations

▪ Security & Governance

▪ Conversion automation

▪ Refactoring approach

▪ Test automation

▪ Improvements to demonstrate

Migration Landscape

▪ End-to-end data dependencies

▪ SQL execution profiles

▪ SQL code inventory-complexity

▪ Security & governance

▪ Pipeline interfaces/volumes

▪ Consumption interfaces/patterns

▪ Known data gaps/idiosyncrasies

▪ Service level objectives

Migration Process

▪ Data Product specific architecture

▪ Data Product sequencing

▪ Security & Governance phasing

▪ Up/downstream teams impacted

▪ Testing cycles & acceptance

▪ Cutover & decommissioning

▪ Resource cost projections

Data Product Migrations

▪ DataOps process environments

▪ Conversion & test execution

▪ Onboard governance & security

▪ Monitor resource/metering

Prototype & Discover (6 weeks) Define & Run Repeating Migrations (variable) 

 

 

Start by targeting a simple data product to develop an appreciation for the work while exploring 
Databricks’ capabilities during the process, and keep these principles in mind: 
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Technical Coverage

SQL is mostly SQL

Automation tools are a bonus

Specialized Logic

Rethink & build

Compute right-sizing

Test-and-calibrate

Security

More granular, more options

Data pipelines

Re-point and go

Isolate the Change

Mapping inter-dependencies by data product

across the data, logic, source & sink 
applications

Applying automated test frameworks

to rigorously and continuously validate 
migration work

Defining the transition & decommission plan 

synchronized with cost & schedule 
expectations

 

 

Beyond the Forklift 
Examining if a forklift strategy is a lost opportunity is appropriate. Such changes are a chance to 
address technical debt; moving to Databricks opens new possibilities for rethinking the end-to-
end environment with far-reaching benefits that can transform your data’s time-to-value, 
accessibility, trust, and cost by way of these benefits: 

• Consolidate data warehousing and data science, eliminating separate systems and their 
data transfer complexities. 

• Consolidate data engineering under a unified pipeline, storage, and data processing stack. 
• Complete complex analytical queries orders of magnitude faster by leveraging the 

Databricks massive scalability query engine. 
• Unify business rules and data governance, eliminating inconsistencies and improving 

data trust. 
• Replace analytic tooling with self-service GenAI-enabled Exploratory Data Analysis. 

 

 

 

 

 

 

 

 

 

 

 

 

 

http://www.ctidata.com


 

www.ctidata.com 31 Rev. 11-Jun-25 

About CTI Data 

Our data and analytics experts specialize in Digital Transformation, Advanced Analytics, AI/ML, 
and Data Marketplaces. This experience provides valuable insights and expertise. We are adept at 
understanding best practices, identifying potential pitfalls, and customizing solutions to meet 
your unique needs.  
By partnering with us, you can drive value from digital transformation efforts as we examine 
your business strategy, analyze your current state, pinpoint opportunities, and develop a strategic 
roadmap that aligns technology investments with strategic goals. We commit to collaborating 
closely with you and sharing accountability for achieving mutual goals.  
Contact us to explore our real-world case studies and learn more about how we have helped our 
clients grow and create business value.  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Disclaimer: This whitepaper is for informational purposes only and does not constitute professional advice. While 
we have endeavored to ensure the accuracy and completeness of the information contained herein, CTI Data makes 
no representations or warranties regarding its accuracy or completeness. The information presented is based on 
current knowledge and understanding and may be subject to change. References to third-party data or findings are 
for informational purposes only, and CTI Data assumes no responsibility for the accuracy of such third-party 
information. The limitations of the technologies or methodologies discussed in this whitepaper should be carefully 
considered before applying them in any specific context.  
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